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Summary 
An experimental method  for measuring  rolling  friction 

is  proposed.  The  method is mechanically simple. It is 
based on  an oscillator  in  a uniform magnetic field and 
does  not involve any mechanical  forces except for  the 
measured  friction.  The  measured  pickup  voltage is 
Fourier  analyzed and yields the  friction  spectral response. 
The  proposed  experiment is not  tailored  for  a  particular 
case. Instead,  various  modes of operation,  suitable  to 
different  experimental  conditions, are discussed. 

Introduction 
Rolling  friction  measurements  usually  involve 

elaborate  mechanical  arrangements and, in some cases, 
are  not easy to  make  (refs. 1 to 4). Moreover,  there is a 
suspicion that dissipative or nondissipative  forces, apart 
from  the  friction to be measured,  affect  the  results. In 
this  report we are proposing  a new method of rolling 
friction  measurement that  does  not rely on mechanical 
devices. The only moving part is the  rolling  body whose 
friction (against a  plane  surface) is to be measured.  It 
involves the use of an oscillator and  the  measurement of 
magnetic  forces. Both the  analysis of the concept and  the 
experimental  approach are given. 

Analysis 
Mechanically the  apparatus is extremely simple, it 

includes a rolling oscillator over a  horizontal  plane.  The 
restoring torque 7‘ is obtained by a  magnetic field B’ 
interacting with a  magnetic  dipole ii according to the 
following equation  (ref. 5 ) :  

F=iiXB (1) 

The magnetic  dipole  results from  dc  current circulating in 
a coil placed inside the  oscillating  body. The directions  of 
Rand   Fa re  parallel at equilibrium. If  we assume  small- 
angle oscillations,  the equation of motion  for  the  angle 
8 ( t )  is 

le’+ Bp8 + f = 0 (2) 

where I is the  moment  of  inertia  and f is the rolling 
friction  torque. 

In cases of an electrically conducting  oscillator, losses 
due  to induced  currents  may  be  important.  These losses, 
which are not  included in equation (2), can be sub- 
stantially reduced  by reducing the  conducting  portions of 
the oscillating body. If the  material  whose  friction is to be 
measured is metallic,  it  can  be  attached as a thin metallic 

foil on  the  surface  of a bulk-insulating  oscillator. 
Bringing the induced  currents to-a minimum is important 
for minimizing the experimental error. If that  cannot  be 
done directly,  it  can  be done electrically by means of a 
feedback  circuit, as discussed later  under  experimental 
considerations.  Although it is possible to practically 
eliminate  induced  currents, we shall  include  their  effect  in 
our preliminary  analysis.  Their  net  effect is a  magnetic 
moment  normal to  Hand proportional  to B e / p ,  where p 
is the electrical resistivity. Thus  the induced  current term 
is a  “Newtonian viscous damping”  term. With  it the 
equation of motion becomes 

I#+ B29 + pB8 + f = 0 (3) 
P 

where 01 is a  constant  dependent  on  the  geometry.  With 
f = 0, the  “frictionless” or  “pure viscous damping’’  case, 
the  solution  of equation (3) expresses exponentially 
decaying oscillations.  When the friction is included, the 
equation is not  soluble  in the general case. Den Hartog 
(ref. 6) first solved accurately the externally  driven 
(forced)  oscillator with Coulomb  (square wave) friction 
and combined Coulomb  and viscous friction. 

Equation (2) or (3) expresses f as  a  differential 
equation of 8. The angle e (  t )  could be measured in 
different ways.  We  suggest the use of a  magnetic  pickup 
as  the  most  suitable  for  our  experimental  approach. As is 
depicted in figure 1 a  pickup coil L, is  placed in the 
oscillator so that its axis is normal to g a t  equilibrium. 
The coils L, L,, and LD are  the  restoring,  pickup,  and 
deriving coils, respectively. 

The voltage V ( t )  of the  pickup coil is 

V (  t )  = - - N / l p B  COS 8 e 1 
C (4) 

where N, and A, are, respectively, the  number  of  turns 
and  the cross-sectional area of L,. For  small-angle 
oscillations we can  approximate 

V ( t )  = - -N&l,Bd 1 
C 

and 

where a1 = 0 with no induced  currents. 
We would  like to stress that  although  the  proposed 

experiment is introduced  herein with specific  features,  the 
frictional  oscillator is far  more general. Thus,  for 
example,  the  restoring  force  could  be  gravity or  another 
force,  and 8 ( t )  could  be  measured by optical or 



The  Laplace  transformation of equation (6) yields 
(ref. 7) 

CYV(f)=CYVo(f) 1- - [ ,:,.fI 

Figure 1. - Oscillator diagram. 

mechanical  means.  Most of  the discussion and analysis 
presented  herein  could  be  applied to  any dissipative 
oscillator. Even the rolling  friction is not essential and  the 
method, in principle, is applicable to sliding  friction  as 
well. A specific apparatus is proposed  because we believe 
it is the simplest  way to apply  the discussed method. 

Even though  equation (3) (or eq. (6)) is soluble in 
certain  cases, it is not  soluble in general.  Rather than 
approximating  it by  using a  model for ft we invert  the 
equation of  motion (i.e., use the measured velocity e ( t )  
to numerically obtain  the  friction A. This  function f(t) 
can in principle  be  interpreted in terms  of  features 
inherent to  the  particular  surfaces  under  study, ignoring 
features  resulting from  the  main  resonance d x  If the 
coefficients ai are known  together with V (  t ) ,  f( t )  can  be 
found directly (by using  numerical  differentiation  and 
integration). We believe that  this  straightforward 
approach, even though  right in principle,  does  not yield 
the  greatest  accuracy.  This is so because numerical 
differentiation usually yields rather  “noisy”  results 
unless incorporated with smoothening  routines.  The 
smoothening,  however, is limited to  the extent that it 
does  not  smear  out  real  features.  The  alternative  method 
of Fourier (or Laplace) transforms used  herein  is 
potentially  better in terms  of  discrimination between 
signal and noise.  Also, it provides  a way of eliminating 
a ] ,  which  is otherwise  the  main  cause  for  systematic 
error.  This is so because, as ft it represents  a loss and 
affects  the  oscillatory  decay. 

The coefficient a1 in equation (6) should be referred 
to as an experimentally adjustable  parameter.  The 
adjustment can be done by means of feedback  electronic 
circuitry, which  is described  in the next section. If a1 is 
adjustable, we would like to consider  in  detail  two cases 
of special interest. One case is when a1 =0, which 
describes either  the  zero  induced  currents or  the induced 
currents  compensated  by  the  feedback  system.  The  other 
case of special interest is when the energy fed  back 
compensates  for  both  the  induced  current loss and  the 
friction loss. 

whereay(t) = 1 y(t)  e-st dt and Vo( t )  is the  friction- 

less solution  for V ( r )  (what V(  f )  would  have been if 
f=O). In equation (7), t =O corresponds to the  maximum 
pickup voltage V,. The frictionless VO ( t )  for a1 = 0 is an 
undamped  harmonic  oscillator.  Its  determination 
involves two  parameters,  the oscillation  period and 
amplitude, which are well approximated by the measured 
period  and  first-cycle  amplitude of V (  t )  . The  constant a2 
should  be  determined  independently.  Thus  for  zero 
induced  currents  the  experimental  procedure involves 
exciting the oscillator by a  pulse in LD, measuring V ( t ) ,  
extracting from it CY VO ( t )  and CY V(  t ) ,  and finally obtain- 
ing f by equation (7). 

If  viscous losses exist (a] # 0), determining Vo( t )  may 
be  a  problem,  since  the  oscillation  decay  rate is affected 
by both f and al. It is always  advantageous to minimize 
induced  currents by reducing the metallic  parts of  the 
oscillator and  enhancing  the resistance of  the  current 
loops. In addition, we can  compensate  for  these losses by 
feedback to LD. We notice that  the poles of CY VO ( t )  must 
be poles of a V ( t ) .  Thus  the feedback  should be adjusted 
to result in an imaginary  pole of CY VO (and CYV). 
Practically  this implies adjusting  the feedback to get the 
best obtainable  maximum of  the  half-line  Fourier 

transform 1 e- iwr  V ( r )  dr. To avoid being in the 
vicinity of the  CYV poles whose  inherent  source is af 
(rather  than avo), check for  the  maximum close to the 
expected VO resonance,  namely W O =  J-2. We 
conclude  that  it is feasible to work in the  zero a1 mode in 
any practical  case and  to  obtain  the half-line  Fourier 
transform  off. 

It is quite  interesting to deduce  from  equation (7) and a 
known  theorem  of  Laplace  transforms  that  (ref. 7) 

m 

0 

m 

Thus  the deviation [ V ( t )  - V o ( t ) ]  is proportional to  the 
convolution  of  the  frictionfwith  the  frictionless  function 
Vo. This  conclusion, even though  not  useful  for  the 
present  analysis,  improves our  understanding.  It  can  be 
generalized to nonoscillatory  problems.  It is valid for a n y  
frictional  problem  whose  frictionless  part  can be written 
as a  linear and  homogeneous  differential  equation. 

So far we have  dealt with the  decaying  oscillation mode 
of operation.  It is worthwhile to consider  modes of 
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operation  that  maintain steady-state  oscillations by 
providing  the energy losses from  an external  source.  At 
f i s t  we assume  that  the energy return is provided by a 
feedback  force  proportional to V, namely  by  adjusting a1 
in  equation (6) to maintain  steady-state  oscillations. The 
periodicity  suggests the use of  the  finite  Fourier 

transform E, ( V) = 1 einwsV( r ) d (  or). Transforming 

equation (6) we get 

r 

“T 

- a2n2w2En ( V) + inoE, m = 0 (9) 

By writing separate  equations  for  the  real  and  imaginary 
parts  and  denoting A,, = &E, ( V ) ,  B, = gmE, ( V ) ,  
C n = C R J Z n ( f ) ,  Dn=9mE,(f), we have 

oi - n2o2 
no 

D, = - alB, + a2 An 

where n = 1, 3, 5 ,  . . . Even n’s are excluded because of 
the  problem  symmetry, since V ( t )  is antisymmetric with 
respect to  a  translation by a half-oscillation  period. 
Equations (10) provide  the  spectral  distribution of f 
versus the  measured  function V ( t )  and  the  parameters 
WO, (12, and u1. For zero induced  currents a1 can be 
obtained by measuring  the  feedback  current  to LD. For 
substantial  induced currents,  however,  an accurate 
determination  of a1 is hard  and this  mode  of  operation is 
undesirable. 

If induced  currents do  not exist, we can  simplify the 
solution by filtering the  feedback  current  and keeping 
only  its  first  harmonic.  Then a1 V in equation (6) is 
replaced by b sin ut, and we  get for  odd n 

where 6 , 1  is the  Kronecker  function.  Similarly to  the case 
of decaying oscillations, equation (1 1) suggests that 
En( V) has a resonance  at wo and may have other 

resonances  (or  different  features)  inherent to  the 
frictional  response.  Typical  relaxation  times  associated 
with the  response of the particular  surfaces in  study 
should  be  reflected  in En(J) .  -Further  insight can  be 
achieved by varying oo (by means  of  the  restoring  force 
dc  current)  and  obtaining EnV; oo). 

Finally, we would  like to  point  out  the possibility of 
external  excitation with fixed amplitude  and  frequency 
(i.e., the  “forced  oscillator”). The  equation  of  motion 
(without  induced  currents)  is 

which transforms  to 

where we have used the  same  notation  as  in  equations 
(10) and (11). Here A ,  has  an extra pole at Q (and 
subharmonics).  Despite  this  limitation,  the  forced 
oscillator is attractive because of its  experimental 
simplicity. The  choice  of  a  particular  mode  of  operation 
depends  on  the  system  under  consideration,  the 
requirements,  and  the  instrumentation  available. 

Experimental 
In keeping with former  sections of this report, where 

we have discussed various possibilities for  matching with 
specific situations, we shall  outline  here an  experimental 
system flexible enough to be used in various  modes of 
operation. 

The  main  requirements  from  the  magnetic field B’ are 
intensity and  homogeneity in the region of oscillations. A 
strong  magnetic field creates high fundamental  frequency 
for  a given magnetic  moment  and  inertia  and  thus  makes 
possible a wider range  of velocities. Also, the stronger the 
field, the higher the  pickup  amplitude  and  consequently 
the signal-to-noise  ratio.  For a cylindrical  oscillator  of 
1-g  cm2 moment  of  inertia, a magnetic field of 104 G ,  and 
a magnetic  moment  of  1 G (a coil  of 1-cm2 cross-sectional 
area  and 10-A turns),  the  fundamental  resonance 
frequency w0/2?r is about 17 Hz. This  frequency, which 
corresponds to  a  surface  peak tangential velocity of  the 
order  of 50 cm  sec - 1, is achievable with quite  moderate 
magnetic  fields  and  moments.  Enhancing  the  frequency is 
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not technically  difficult, but  one  should  be  careful  to 
keep the  inertia  term I8/R a I /R  w2 smaller than  the 
sliding  friction  force;  otherwise,  slip  may  occur. 

Even though  the sliding friction  force  puts an upper 
limit on  the  fundamental  frequency of  oscillation,  the 
analysis of higher  harmonics is limited  only by the  rate of 
data acquisition and  the  time  constant  of  the electronics. 
With  modern  equipment a data acquisition rate of 10-3 
relative  resolution for  both  the oscillation  period and 
voltage  amplitude  should  not be difficult to achieve. 
Thus with careful shielding and  grounding, very  high 
order  harmonics  are  resolvable.  This  feasible  harmonics 
resolution  provides  valuable information  on intrinsic 
frictional  relaxation  times  much  shorter  than  the 
oscillation  period.  Such  may  be, for example,  the 
relaxation  time needed for  the  friction to switch polarity 
around the  zero velocity point. If this  time is  in the  range 
10- sec, it could be detected by relatively standard 
equipment. To  go  to  the  other extreme  of  long  relaxation 
times,  the  fundamental  frequency  should be  lowered (to 
the 0.1 -Hz range). 

With  approximately  the  magnetic field and  the 
frequency  mentioned  above, the  pickup coil can be 
designed to yield a  signal  amplitude of a few millivolts 
without exceeding the  time-constant  limit.  This  would 
allow  a signal resolution  better  then 10-3. Altogether, 
instrumentation is not  expected to be the cause  of 
substantial  experimental errors. All of  the  other  errors 
foreseen  can  be classified into  two  groups: (1) errors 
stemming from gravitational-geometrical  origins  such as 
a possible lack of balance of either the oscillator or  the 
planar  surface  and (2) errors resulting from uncertainty 
in determining the  constants  of  the  problem  (the ai’s). 
The first group is not hard  to reduce, by fine  machining 
and mechanical balancing, to a  minute value. Also, we 
can  show that this  type  of error, when small,  results in a 
small  constant  additive to ao. Thus it  translates to be an 
uncertainty  of  the  second group  but a very small  one. The 
additive  constant would not  cause  any  additional  error to 
that which exists anyway in measuring a0 (or wo). 

The  other  errors result from  uncertainties in the values 
of  the coefficients ao, a l ,  and a2 (or 00, UO, and a& For 
all nonconducting  materials a1 = O  (or can be directly 
measured if caused by feedback). For  conductors  the best 
policy would be to  start with minimal  induced  currents. 
This  objective  could be  achieved if the bulk of  the 
oscillator is made of an insulator, where the tested 
sample,  as  a  thin  foil  of  thickness d, is attached to the 
angular section that makes  contact  during  oscillations. 
With  this  geometry the induced  current is minimized to 
the  order  of dB(ROm)2uOe/c and  the resulting  force is 
(dAu) (BIc)2680mR, where A is the foil’s area, 2R8, is 
the foil’s width,  and u is the  conductivity.  The  last  force 
is somewhat  different in character  from  the  “Newtonian 

viscous” term discussed so far, which approximates  the 
homogeneous  bulk  conductor, or  the  full cylindrical foil. 
Inserting values as in the  former example and u= IO4 
(n cm) - 1 and d = 10 - 2  cm  in  the last  expression, we get  a 
force of 10-5 to 10-6 g. This  value is negligible when 
compared with any typical  rolling  friction  force, and it 
would not  become  significant even for  the lowest 
resistivity metal.  Only  when  the  whole  oscillator is made 
of  a  good conductor might the induced  current  produce  a 
significant error,  and  then it should be treated  along  the 
lines described in the section Analysis. 

Since  in most  practical cases we can  reduce a1 to a 
negligible value,  there are  two independent  parameters to 
measure.  One  feasible  possibility is to measure 00 and ao. 
Note  that ao= -N,A,I , /Nd, ,  where N, and A ,  are  the 
number  of  turns  and  cross-sectional  area of the  restoring 
coil and I,  is the  current  through  the  restoring  coil.  Thus 
a0 is proportional  to  the  ratio of the  pickup voltages  of 
these  two coils when the cylinder is  revolving at a 
constant  angular velocity. This  quantity  can be measured 
to a very good  accuracy.  The  parameter wo can  be 
approximated by the  actual  measured  frequency. If this is 
not  accurate  enough,  a  correction  could be made by 
taking  into  account  the loss of  the  first  interation  and 
making  a  second  iteration  calculation. To conclude, we 
estimate  that  absolute  accuracies  of  the  order  of *1 
percent  can  be obtained.  For a  comparison between two 
samples, the relative  accuracy  could be  higher  by one 
order  of  magnitude. 

A block  diagram  of  the  experimental system is shown 
in  figure 2. The system makes possible the choice  between 
feedback-maintained  steady-state  oscillations,  pulse- 
excited decaying  oscillations, or continuous-wave  forced 
oscillations. The feedback  control  unit might include  a 
filter i f  one chooses to feed  back only  the first harmonic. 

The oscillating  body  cannot be a  sphere because any 
rotational  component  around  the axis of the pickup coil 
is forbidden.  There  should be a cylindrical symmetry 
around  the axis mutually  normal to the coil’s axes. Apart 
from  this,  a  great  deal  of  freedom in the  oscillator  shape 
is allowed. It may  be  of  any  shape that  has a  sectional 
cylindrical  symmetry. A measurement on a rolling ball 
could be done if only  one  degree of freedom is eliminated 
(e.g., by a rigid attachment of two  identical balls). The 
finishing  of the  surfaces  should be accurate  enough to 
avoid  microscopic  slip. If the  friction versus load  has to 
be measured, we recommend varying the  load by 
attaching weights on the  oscillator.  Loading by means  of 
any  mechanical system  is undesirable since it may 
introduce  tangential  forces  additional to those described 
in equation (3). Finally, since no  assumption  has been 
made on f, the experiment  can be performed in any 
medium or in vacuum  and on either  dry or lubricated 
surfaces. 
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Figure 2. - Block diagram of experimental system. 

Concluding  Remarks 
The  method suggested herein for measuring  rolling 

friction is characterized by mechanical  simplicity and is 
compatible with friction  measurements and detecting 
relaxation  times in the  range 101 to 10-4 sec. It  is, 
however, a relatively  low-velocity  measurement  because 
of possible  slip at higher velocities. We believe it is 
capable of detecting  friction  polarity  switching  times  and 
friction  variations that may occur in the low speed  range 
(0.1 cm/sec,  ref. 2). Further  analysis is needed for 
interpreting  the output spectral  response  of  rolling 
friction torque in terms of constant-velocity  friction.  At 
low vibrational  frequencies, when the acceleration is 
small  enough  not to smear out  friction velocity- 
dependence  variations,  translation to velocity depen- 
dency is easy.  In  this  case we can  write 

where t (8) = t (  V) is the inverse of V ( t )  and t varies  over 
one oscillation  period. If high acceleration  results  in f( 6) 
different  from  the steady-state  function, we can still learn 
a  great  deal about  the relaxation  time  required to 
establish  the  steady-state  function. 

Lewis Research Center 
National  Aeronautics  and  Space  Administration 
Cleveland,  Ohio,  August 15, 1983 
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